ScalaBlitz

Efficient Collections Framework

What’s a Blitz?

e!s a style of _

Blitz-chess 1s a style of

(rapia)chess play.

Knights have horses.

def mean(xs: Array|[Float]): Float =
xs.par.reduce(_+) / xs.length

S

=

stackoverflow

Is it a good idea to run "...par.map(on large lists directly?

A, Let'ssaylhave a somewhat large (several millions of items, or s0) list of strings. Is it a good idea to run

8
v
W

2

something like this:

val updatedList = myList.par.map(someAction).tolList
Or would it be a better idea to group the list before running ...par.map(. like this:

val numberOfCores = Runtime.getRuntime.availableProcessors
val updatedList =
myList.grouped(numberOfCores).toList.par.map(_.map(someAction)).toList.flatten

UPDATE: Given that someAction is quite expensive (comparing to grouped . tolist . efc.)
scala parallel-collections
share | edit | close | flag | protect

edited Apr 7 12 at 14:02 asked Apr 7 12 at 13:51

Vilius Normantas
706 »223921
add comment

start a bounty

2 Answers active oldest votes
4. Run par.map directly, as it already takes the number of cores into account. However, do not keep a
11 List , as that requires a full copy to make into a parallel collection. Instead, use Vector .

W share|edit|flag answered Apr 7 "12 at 14:05

v

@l Daniel C. Sobral
| 139k #26 270 2460

add comment

Ask Question

tagged

scala | x 20605
parallel-collections | x 28
asked 1 yearago

viewed 283 times
active 1 year ago

..l CAREERS 2.0

Mobile UX Developer
SpotMe
Lausanne, Switzerland /...

Engineering Manager
SpotMe
Lausanne, Switzerland /...

Software Engineer (C++/ OpenGL)
Moka Studio
Lausanne, Switzerland

More jobs near Lausanne...

As suggested, avoid using lists and par . since that entails copying the list into a collection that can be
easily traversed in parallel. See the Parallel Collections Overview for an explanation.

As described in the section on concrete naralle!l collection classes a ParVector mav be less efficient

Related

55 Preferred way to create a
Scala list

42 Scala: Nil vs List()

7 When a ConcurrentBag is
better than a List?

1 ParVector map is not
running in parallel

4 scala ranges versus lists
performance on large

Is it a good idea to run "...par.map(on large lists directly?

4 Let's say | have a somewhat large (several millions of items, or so) list of strings. Is it a good idea to run
something like this:

W val updatedList = myList.par.map(someAction).tolList

Or would it be a better idea to group the list before running ...par.map(, like this:

val numberOfCores = Runtime.getRuntime.availableProcessors
val updatedList =
myList.grouped(numberOfCores).toList.par.map(_.map(someAction)).toList.flatten

UPDATE: Given that someAction is quite expensive (comparing to grouped , tolList , etc.)

With Lists, operations
can only be executed
from left to right

0006

Not your typical list.

\\l
=] stackoverflow

Understanding parallel exists and find

PN
7
v

ki

Itake a List[Int] and wantto search for avalue x where x * 18 > 5ee in parallel. S0 exists
should return true if the list contains any value of 51 or greater.

def f(x: Int) = {

println(“calculating for

+ X)

Thread.sleep(16@ - x)
println("finished " + x)

X * 10

}

val res = List.range(1l, 100).par.exists(f(_) > 500)

Which gives results:

calculating
calculating
calculating
calculating
calculating
finished 75
finished 50
calculating
finished 25
calculating
finished 13
calculating
finished 1
calculating
finished 51
finished 26
calculating
finished 14
calculating
finished 2
calculating
finished 27
calculating
finished 15

for
for
for
for
for
for
for

for

for

for

for

for

for

25
5e
75
13
51

26

14

27

15

28

// <-- first valid result found: 75 * 10 > 500

// but it kicks off more expensive calculations

// and more

>

m

Ask Question

tagged
scala | x 20605
parallel-processing | x 5138

parallel-collections = x 28

asked 1 yearago
viewed 292 times
active 1 yearago

.1l CAREERS 2.0

Software Engineer, Backend
SpotMe
Lausanne, Switzerland /...

Talented DevOps needed for
exciting Saas platform....

3S Mobile

Zurich, Switzerland / remote

(Senior) Java Developer (f/m)
HolidayCheck AG
Bottighofen, Switzerland /...

Linked

14 Scala Parallel
Collections- How to return
early?

§ Why doesn't scala's
parallel sequences have
a contains method?

Related

19 How do | replace the fork
ioin pool for a Scala 2.9

Understanding parallel exists and find

| take a List[Int] and want to search for a value x where x * 10 > 500 in parallel. S0 exists
should return true if the list contains any value of 51 or greater.

.7
W def f(x: Int) = {

println("calculating for
Thread.sleep(100 - x)

1 println("finished " + x)
x * 10

+ X)

¥

val res = List.range(1l, 100).par.exists(f(_) > 500)

def

par: ParHashMap[A, B]
Returns a parallel implementation of this collection.

For most collection types, this method creates a new parallel collection by copying all
the elements. For these collection, par takes linear time. Mutable collections in this
category do not produce a mutable parallel collection that has the same underlying
dataset, so changes in one collection will not be reflected in the other one.

Specific collections (e.g. ParArray Or mutable.ParHashMap) override this default
behaviour by creating a parallel collection which shares the same underlying dataset.
For these collections, par takes constant or sublinear time.

All parallel collections return a reference to themselves.
returns a parallel implementation of this collection

Definition Classes HashMap — CustomParallelizable — Parallelizable

is appa

Apparently not enough

=Scala Documentation AP Learn Quickref Contribute SIPs Wik Search

Parallel Collection Conversions ahs | @ | 0

Converting between sequential and parallel Contents

collections

Every sequential collection can be converted to its parallel variant using the par method. Certain
sequential collections have a direct parallel counterpart. For these collections the conversion is
efficient— it occurs in constant time, since both the sequential and the parallel collection have the collections

same data-structural representation (one exception is mutable hash maps and hash sets which are Converting between different collection types
slightly more expensive to convert the first time par is called, but subsequent invocations of par Concurrent Tries

take constant time). It should be noted that for mutable collections, changes in the sequential Architecture of the Parallel Collections Library
collection are visible in its parallel counterpart if they share the underlying data-structure. Creating Custom Parallel Collections

Configuring Parallel Collections

» Overview
Concrete Parallel Collection Classes
Parallel Collection Conversions
Converting between sequential and parallel

Sequential Parallel « Measuring Performance
mutable

Array ParArray

HashMap ParHashMap

HashSet ParHashSet

No amount of
documentation 1s
apparently enough

A
=] stackoverflow EEES 2 I T Iy

Can reduceleft be executed in parallel?

y N | just started learning Scala, so please be patient :-)
5 | have a question about how reducelLeft behaves. Here an example:
List(1, 2, 3, 4, 5) reduceleft (_ +)
| wonder if the calculation can be done simultanously, e.g.:

first round:

The reduceleft
guarantees operations are
executed from left to right

t t G

Parallel and sequential
collections sharing operations

There are several
problems here

OW WC SCC USCIS

Bending the truth.

And sometimes we
were just slow

So, we have a new API now

def findDoe (names: Array[String]): Option[String]
{

names . toPar.find(_ .endsWith (“Doe”))

}

Wait, you renamed a
method?

def findDoe (names: Array[String]): Option[String]

{

}

names . toPar.find(_ .endsWith (“Doe”))

Yeah, par already exists.
But, toPar 1s different.

def findDoe (names: Array[String]): Option[String] =
{

names . toPar.find(_ .endsWith (“Doe”))

}

def findDoe (names: Array[String]): Option[String]
names . toPar.find(_ .endsWith (“Doe”))

{

}

implicit class ParOps|[Repr] (val r: Repr) extends AnyVal {
def toPar = new Par(r)

}

def findDoe (names: Array[String]): Option[String]
ParOps (names) . toPar.find(.endsWith (“"Doe”))

{

}

implicit class ParOps|[Repr] (val r: Repr) extends AnyVal {
def toPar = new Par(r)

}

ParOps (names)

implicit class ParOps[Repr] (val r: Repr) extends AnyVal {
def toPar = new Par(r)

}

class Par[Repr] (r: Repr)

def findDoe (names: Array[String]): Option[String] {

(new Par (names)) .find(.endsWith("Doe”))

}

implicit class ParOps[Repr] (val r: Repr) extends AnyVal ({
def toPar = new Par (r)

}

class Par[Repr] (r: Repr)

(new Par (names)) .find(.endsWith (“Doe”))

class Par[Repr] (r: Repr)

But, Par [Repr] does not
have the £ 1nd method!

(new Par (names)) .find(.endsWith (“Doe”))

class Par[Repr] (r: Repr)

True, but Par [Array[String]]
does have a £ 1ind method.

(new Par (names)) .find(.endsWith (“Doe”))

implicit class ParArrayOps|[T] (pa: Par[Array[T]]) ({

def find(p: T => Boolean): Option[T]

More flexible!

More flexible!
e does not have to implement methods that
make no sense 1n parallel

More flexible!

e does not have to implement methods that
make no sense 1n parallel

® slow conversions explicit

More flexible!
e does not have to implement methods that

make no sense 1n parallel
® slow conversions explicit
e non-intrusive addition to standard library

More flexible!

e does not have to implement methods that
make no sense 1n parallel

® slow conversions explicit

e non-intrusive addition to standard library

e casy to add new methods and collections

More flexible!

e does not have to implement methods that
make no sense 1n parallel

slow conversions explicit

non-intrusive addition to standard library
easy to add new methods and collections
import switches between implementations

def findDoe (names: Seq[String]): Option[String]
names.toPar.find(.endsWith (“Doe”))

}

def findDoe (names: Seq[String]): Option[String]
names.toPar.find(.endsWith (“Doe”))

}

@) LinearSeq[A]

But how do I write generic code?

def findDoe[Repr|[]] (names: Par[Repr[String]]) = {
names . toPar.find(_ .endsWith (“Doe”))

}

def findDoe[Repr|[]] (names: Par[Repr[String]]) = {
names . toPar.find(_ .endsWith (“Doe”))

}

Par [Repr [String]] does not
have a find

def findDoe[Repr[]: Ops] (names: Par[Repr[String]]) = {
names . toPar.find(_ .endsWith (“Doe”))

}

def findDoe[Repr[]: Ops] (names: Par[Repr[String]]) = {
names . toPar.find(_ .endsWith (“Doe”))

}

We don’t do this.

pOSSI

ble, b

def findDoe (names: Reducable[String])= {
names.find(_.endsWith(“Doe”))

}

def findDoe (names: Reducable[String])= {
names.find(_.endsWith(“Doe”))

}

findDoe (Array (1, 2, 3).toPar)

def findDoe (names: Reducable[String])= {
names.find(_.endsWith(“Doe”))

}

findDoe (toReducable (Array(l, 2, 3).toPar))

def findDoe (names: Reducable[String])= {
names.find(_.endsWith(“Doe”))

}

findDoe (toReducable (Array(l, 2, 3).toPar))

def arraylIsReducable[T]: IsReducable[T] =

{

}

So let’s write a program!

import scala.collection.par.

val pixels = new Array[Int] (wdt * hgt)
for (idx <- (0 until (wdt * hgt)).toPar) ({

import scala.collection.par.

val pixels = new Array[Int] (wdt * hgt)

for (idx <- (0 until (wdt * hgt)).toPar) ({
val x = idx % wdt
val y = idx / wdt

import scala.collection.par.

val pixels = new Array[Int] (wdt * hgt)

for (idx <- (0 until (wdt * hgt)).toPar) ({
val x = idx %
val y = idx / wdt
pixels (idx) =

}

import scala.collection.par.

val pixels = new Array[Int] (wdt * hgt)

for (idx <- (0 until (wdt * hgt)).toPar) ({
val x = idx wdt
val y = idx wdt
pixels (idx) computeColor (x, y)

}

Il N o°

Scheduler not found!

import scala.collection.par.
import Scheduler.Implicits.global

val pixels = new Array[Int] (wdt * hgt)

for (idx <- (0 until (wdt * hgt)).toPar) ({
val x = idx wdt
val y = idx wdt
pixels (idx) computeColor (x, y)

}

Il N o°

import scala.collection.par.
import Scheduler.Implicits.global

val pixels = new Array[Int] (wdt * hgt)

for (idx <- (0 until (wdt * hgt)) .toPar) {
val x = idx wdt
val y = idx wdt
pixels (idx) computeColor (x, y)

}

Il N o°

New parallel collections
33% faster!

Now Previously
103 ms 148 ms

Workstealing tree scheduler

rocks!

AT]

Workstealing tree scheduler
rocks!

AN HH N e

But, are there other interesting

41 1 1 O

Fine-grained uniform
workloads are on the opposite
side of the spectrum.

NN NN N N N N N N N I N I B

def mean(xs: Array[Float]): Float = {
val sum = xs.toPar.fold(0) (_ +)
sum / xs.length

}

NN N N N N N N N N N N A

def mean(xs: Array[Float]): Float = {
val sum = xs.toPar.fold(0) (_ +)
sum / xs.length

}
Now Previously
15 ms 565 ms

But how?

def fold[T] (a: Iterable[T]) (z:T) (op: (T, T) =>T) = {
var it = a.iterator
var acc = z
while (it.hasNext) {

acc = op(acc, it.next)

acc

def fold[T] (a: Iterable[T]) (z:T) (op: (T, T) =>T) = {
var it = a.iterator
var acc = z
while (it.hasNext) {

acc = box(op(acc, it.next)) w

acc

Autoboxing

def fold[T] (a: Iterable[T]) (z:T) (op: (T, T) =>T) = {
var it = a.iterator
var acc = z
while (it.hasNext) {

acc = box(op(acc, it.next))

acc

Generic methods cause boxing of primitives

def mean (xs: Array[Float]): Float = {
val sum = xs.toPar.fold(0) (+)
sum / xs.length

def mean (xs: Array[Float]): Float = {
val sum = xs.toPar.fold(0) (+)
sum / xs.length

}

Generic methods hurt performance
What can we do instead?

def mean (xs: Array[Float]): Float = {
val sum = xs.toPar.fold(0) (+)
sum / xs.length

}

Generic methods hurt performance
What can we do instead?

Inline method body!

def mean (xs: Array[Float]):

val sum = {
var it = xs.iterator
var acc = 0
while (it.hasNext) {

acc = acc + it.next

acc

}

sum / xs.length

Float

{

def mean(xs: Array[Float])
val sum = {
var it = xs.iterator
var acc = 0
while (it.hasNext) {

acc = acc + it.next

acc

}

sum / xs.length

}

: Float

{

Specific type
No boxing!
No memory allocation!

def mean(xs: Array[Float]): Float = {
val sum = {
var it = xs.iterator

var acc = 0
while (it.hasNext) { SpeCiﬁC type

} acc = acc + it.next NO bOXing!

acc No memory allocation!
: 565 ms — 281 ms

sum / xs.length

2X speedup

def mean (xs: Array[Float]):

val sum = {

var it = xs.iterator

var acc = 0
while (it.hasNext) {

acc = acc + it.next

acc

}

sum / xs.length

Float

{

def mean (xs:
val sum = {

var it = xs.iterator

var acc = 0
while (it.hasNext) {

acc = acc + it.next

acc

}

sum / xs.length

}

Array[Float]) :

Float

{

Iterators? For Array?
We don't need them!

def mean (xs: Array[Float]) :

val sum = {

var 1 =0

val until = xs.size
var acc = 0

while (1 < until) {

acc = acc + a(i)
i=1i+1

}

acc

}

sum / xs.length

}

Float

= {

Use index-based access!

def mean (xs: Array[Float]) :
val sum = {

var 1 = 0

val until = xs.size

var acc = 0

while (1 < until) {
acc = acc + a(i)
i=1+1

}

acc

}
sum / xs.length

}

Float = {

Use index-based access!

281 ms — 15 ms

19X speedup

Are those optimizations parallel-collections specific?

Are those optimizations parallel-collections specific?

NO

Are those optimizations parallel-collections specific?
No

You can use them on sequential collections

def mean(xs: Array[Float]): Float = {
val sum = xs.fold(0) (_ +)
sum / xs.length

}

import scala.collections.optimizer.
def mean(xs: Array[Float]): Float = optimize({
val sum = xs.fold(0) (_ +)

sum / xs.length

}

import scala.collections.optimizer.
def mean(xs: Array[Float]): Float = optimize({
val sum = xs.fold(0) (_ +)

sum / xs.length

}

You get 38 times speedup!

Future work

Maps
Sets
Lists
Vectors

@specialized collections

Both faster &
—- cONSUMINg less

memory

Maps
Sets
Lists
Vectors

@specialized collections

Both faster &
—- cONSUMINg less

memory

Expect to get this for free inside
optimize{} block

jdk8-style streams(parallel views)

ngt _ Lazy data-parallel
Lightweight ——————p» operations made
Expressive API easy

Optimized

Future's based asynchronous API

val sum = future{ xs.sum }
val normalized = sum.andThen (sum => sum/xs.size)

Boilerplate code, ugly

Future's based asynchronous API

val sum = xs.toFuture.sum
val scaled = xs.map(_/ sum)

Simple to use Asynchronous da

Iéightweight API_> parallel operation
xpressive made easy

Optimized

Current research: operation fusion

val minMaleAge = people.filter(.isMale)
.map(_.age) .min

val minFemaleAge = people.filter(.isFemale)
.map(_.age) .min

Current research: operation fusion

val minMaleAge = people.filter(.isMale)
.map(_.age) .min

val minFemaleAge = people.filter(.isFemale)
.map(_.age) .min

e Requires up to 3 times more memory than original collection
e Requires 6 traversals of collections

Current research: operation fusion

val minMaleAge = people.filter(.isMale)
.map(_.age) .min

people.filter(.isFemale)
.map(_.age) .min

val minFemaleAge

e Requires up to 3 times more memory than original collection
e Requires 6 traversals of collections

We aim to reduce this to single traversal with no
additional memory.
Without you changing your code

